Encoding a triangulation as a permutation of its point set
نویسندگان
چکیده
We present algorithms that given a straight edge tri-angulation of n points in the plane encode a triangu-lation as a permutation of the points. A rst algorithm , of rather theoretical interest, realizes the encoding and decoding in O(n) time. We also present a more practical algorithm consuming O(n log n) time. As a byproduct of this work we get a new upper bound on the number of triangulations of planar point sets of at most 2 8:2n+O(log n) .
منابع مشابه
ON THE SPECTRUM OF DERANGEMENT GRAPHS OF ORDER A PRODUCT OF THREE PRIMES
A permutation with no fixed points is called a derangement.The subset $mathcal{D}$ of a permutation group is derangement if all elements of $mathcal{D}$ are derangement.Let $G$ be a permutation group, a derangementgraph is one with vertex set $G$ and derangement set $mathcal{D}$ as connecting set. In this paper, we determine the spectrum of derangement graphs of order a product of three primes.
متن کاملPERMUTATION GROUPS WITH BOUNDED MOVEMENT ATTAINING THE BOUNDS FOR ODD PRIMES
Let G be a transitive permutation group on a set ? and let m be a positive integer. If no element of G moves any subset of ? by more than m points, then |? | [2mp I (p-1)] wherep is the least odd primedividing |G |. When the bound is attained, we show that | ? | = 2 p q ….. q where ? is a non-negative integer with 2 < p, r 1 and q is a prime satisfying p < q < 2p, ? = 0 or 1, I i n....
متن کاملA Characterisation of the Minimal Triangulations of Permutation Graphs
A minimal triangulation of a graph is a chordal graph obtained from adding an inclusion-minimal set of edges to the graph. For permutation graphs, i.e., graphs that are both comparability and cocomparability graphs, it is known that minimal triangulations are interval graphs. We (negatively) answer the question whether every interval graph is a minimal triangulation of a permutation graph. We g...
متن کاملThe remoteness of the permutation code of the group $U_{6n}$
Recently, a new parameter of a code, referred to as the remoteness, has been introduced.This parameter can be viewed as a dual to the covering radius. It is exactly determined for the cyclic and dihedral groups. In this paper, we consider the group $U_{6n}$ as a subgroup of $S_{2n+3}$ and obtain its remoteness. We show that the remoteness of the permutation code $U_{6n}$ is $2n+2$. Moreover, ...
متن کاملCalculations of Dihedral Groups Using Circular Indexation
In this work, a regular polygon with $n$ sides is described by a periodic (circular) sequence with period $n$. Each element of the sequence represents a vertex of the polygon. Each symmetry of the polygon is the rotation of the polygon around the center-point and/or flipping around a symmetry axis. Here each symmetry is considered as a system that takes an input circular sequence and g...
متن کامل